If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-17x+10=0
a = 7; b = -17; c = +10;
Δ = b2-4ac
Δ = -172-4·7·10
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-3}{2*7}=\frac{14}{14} =1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+3}{2*7}=\frac{20}{14} =1+3/7 $
| 5(3x+1)=4x+16 | | 0=(-3t^2)+14t-14 | | X+(X-46)+(x-35)+1.5x=360 | | 4-(6x+12)=5x+14 | | -18g-20-2g=-4(4g-5) | | (1/2)z+4=(5/2)z-8 | | -0.3r=4.7 | | n^2-12n=89 | | 4x+11=4+x | | -1+9c=-14+13c-3c | | 8=6x+5(×+6) | | 1.50x+0.25=700 | | -10w+2=-8w-17-2w | | 6f-14+26-3f-15f=0 | | -3(-11+x)=93 | | 55=156-v | | 9q-20-18q=-11q+8 | | 4-5t=49 | | -w+199=6 | | 18+11r+2r=-13+13r | | 10x+51=3x+2 | | 21+8t=50-11t | | -5(3=q)+4=5q-11 | | -u+52=234 | | 6-3u+7=-13-3u | | 5y-(1)=29 | | $60+$20.45n=57.95n | | |x+5|+24=20 | | 5q-11=5q-11 | | c=38.75+0.50 | | 1-5p=12-3p-3p | | 80=60x-0.3x^2 |